Highly recommended:

Use a notebook or a section in your binder to organize your math notes. They will be a useful reference for daily work and a valuable study tool for each unit test.

Label each section with the lesson number.

Notes: 1.1

*Sets $\cup=$ union (all terms combined)
$\cap=$ intersection (common terms only)

$$
\text { or } x>-3 \quad-3
$$

*Repeating decimal to fraction

$$
\begin{aligned}
& \text { closed } \\
& \text { endpoint } \\
& \text { used for } \\
& \geq \leq
\end{aligned}
$$

\rightarrow add example here from homework

Previously:

Express each repeating decimal as a fraction.

1.1 \#77b $\rightarrow 0.2 \overline{8}$

Goal: multiply $x=0.288888 \ldots \ldots$ by appropriate powers of 10, then subtract and eliminate repeating part and solve for x.

You must show work or no credit!!!

$$
\begin{gathered}
100 x=28.8888 \\
-10 x=-2.8888 \\
\hline 90 x=26 \\
x=\frac{26}{90}
\end{gathered}
$$

Today's assignment:

1.1 \#23-28, 30, 41-43, 47-59odd, 69-72, 75, 77
NO calculator!!
Write problem, show work!
Put work on a sheet of paper that is separate from today's notes.

See book for examples that are similar to the assigned problems:

Assigned problem
 \#23-28
 \#30
 \#41-43
 \#47-59 odd
 \#69-72
 \#75
 \#77
 See ebook for example
 \#1 and \#2
 \#3
 \#4
 \#5
 \#7
 \#8
 See intro notes/example for real numbers

Refer to book for extra examples:

Example 4 Union and Intersection of Sets

If $S=\{1,2,3,4,5\}, T=\{4,5,6,7\}$, and $V=\{6,7,8\}$, find the sets $S \cup T, S \cap T$, and $S \cap V$.

Solution

$$
\begin{aligned}
& S \cup T=\{1,2,3,4,5,6,7\} \quad \text { All elements in } S \text { or } T \\
& S \cap T=\{4,5\} \quad \text { Elements common to both } S \text { and } T \\
& S \cap V=\emptyset \quad S \text { and } V \text { have no element in common }
\end{aligned}
$$

Now Try Exercise 41

Similar to \#47-59odd:

Example 5 Graphing Intervals

Express each interval in terms of inequalities, and then graph the interval.
(a) $[-1,2)=\{x \mid-1 \leq x<2\}$

(b) $[1.5,4]=\{x \mid 1.5 \leq x \leq 4\} \longrightarrow \xrightarrow[4]{P}$
(c) $(-3, \infty)=\{x \mid-3<x\}$

Now Try Exercise 47

Example for \#77 can be found under intro notes for "real numbers"

Note

A repeating decimal such as

$$
x=3.5474747 \ldots
$$

is a rational number. To convert it to a ratio of two integers, we write

$$
\begin{aligned}
1000 x & =3547.47474747 \ldots \\
10 x & =35.47474747 \ldots \\
990 x & =3512.0
\end{aligned}
$$

Thus $x=\frac{3512}{990}$. (The idea is to multiply x by appropriate powers of 10 and then
subtract to eliminate the repeating part.)

Helpful tips for navigating the ebook:

\therefore CENGAGE MINDTAP

Exponential Notation
If a is any real number and n is a positive integer, then the nth power of a is

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n \text { factors }}
$$

The number - in onllon tha heon and - io called the exponent.
take note
Select text while reading to see
options for adding notes and
options for adding notes and
highlights.
(a) $\left(\frac{1}{2}\right)^{5}=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{32}$
(b) $(-3)^{4}=(-3) \cdot(-3) \cdot(-3) \cdot(-3)=81$
(c) $-3^{4}=-(3 \cdot 3 \cdot 3 \cdot 3)=-81$

Now Try Exercise 17

D Note the distinction between $(-3)^{4}$ and -3^{4}. In $(-3)^{4}$ the exponent applies to -3 , but in
-3^{4} the exponent JUMP Around
Jump to any page in the chapter.
and track your location.

WHAT IS THAT?
Keep an eye out for: Footnotes*,
images and tables \uparrow

Helpful tips for navigating the ebook:

Familiarity with the following rules is essential for our work with exponents and bases. In the table the bases a and b are real numbers, and the exponents m and n are integers.

Laws of Exponents

Law	Example	Description
1. $a^{m m} a^{n}=a^{m+n}$	$3^{2} \cdot 3^{5}=3^{2+5}=3^{7}$	To multiply two powers of the same number, add the exponents.
2. $\frac{a^{m}}{a^{n}}=a^{m-n}$	$\frac{3^{5}}{3^{2}}=3^{5-2}=3^{3}$	To divide two powers of the same number, subtract the exponents.
3. $\left(a^{m}\right)^{n}=a^{m n}$	$\left(3^{2}\right)^{5}=3^{2.5}=3^{10}$	To raise a power to a new power, multiply the exponents.
4. $(a b)^{n}=a^{n} b^{n}$	$(3 \cdot 4)^{2}=3^{2} \cdot 4^{2}$	To raise a product to a power, raise each factor to the power.
5. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	$\left(\frac{3}{4}\right)^{2}=\frac{3^{2}}{4^{2}}$	To raise a quotient to a power, raise both numerator and denominator to the power.
6. $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}$	$\left(\frac{3}{4}\right)^{-2}=\left(\frac{4}{3}\right)^{2}$	To raise a fraction to a negative power. invert the fraction and change the sign of the exponent.
7. $\frac{a^{-n}}{b^{-m}}=\frac{b^{n}}{a^{n}}$	$\frac{3^{-2}}{4^{-5}}=\frac{4^{5}}{3^{2}}$	To move a number raised to a power from numerator to denominator or from denominator to numerator, change the sign of the exponent.

Look for videos with further information and explanations:

Rules for Working with Exponents

© Video: Rules for Working with Exponents

Copyright © Cengage Learning. All Rights Reserved

Helpful tips for navigating the ebook:

Chapter 1: Fundamentals
Chapter Contents

1.3 Algebraic Expressions

A variable is a letter that can represent any number from a given set of numbers. If we start with variables, such as x, y, and z , and some real numbers and combine them using addition, subtraction, multiplication, division, powers, and roots, we obtain an algebraic expression. Here are some examples:
$2 x 2-3 x+4 x+10 y-2 z y 2+4$
A monomial is an expression of the form axk, where a is a real number and k is a nonnegative integer. A binomial is a sum of two monomials and a trinomial is a sum of three monomials. In general, a sum of monomials is called a polynomial. For example, the first expression listed above is a polynomial, but the other two are not.

Polynomials

A polynomial in the variable x is an expression of the form

$$
a n x n+a n-1 x n-1+\cdots+a 1 x+a 0
$$

where $a 0, a 1, \ldots, a n$ are real numbers, and n is a nonnegative integer. If $a n \neq 0$, then the polynomial has degree n. The monomials akxk that make up the polynomial are called the terms of the polynomial.

Note that the degree of a polynomial is the highest power of the variable that appears in the polynomial.

Polynomial	Type	Terms	Degree
$2 \times 2-3 x+4$	trinomial	$2 \times 2,-3 x, 4$	2
$\times 8+5 x$	binomial	$\times 8,5 x$	8

